34 research outputs found

    Streaming Kernelization

    Full text link
    Kernelization is a formalization of preprocessing for combinatorially hard problems. We modify the standard definition for kernelization, which allows any polynomial-time algorithm for the preprocessing, by requiring instead that the preprocessing runs in a streaming setting and uses O(poly(k)log⁥∣x∣)\mathcal{O}(poly(k)\log|x|) bits of memory on instances (x,k)(x,k). We obtain several results in this new setting, depending on the number of passes over the input that such a streaming kernelization is allowed to make. Edge Dominating Set turns out as an interesting example because it has no single-pass kernelization but two passes over the input suffice to match the bounds of the best standard kernelization

    A shortcut to (sun)flowers: Kernels in logarithmic space or linear time

    Full text link
    We investigate whether kernelization results can be obtained if we restrict kernelization algorithms to run in logarithmic space. This restriction for kernelization is motivated by the question of what results are attainable for preprocessing via simple and/or local reduction rules. We find kernelizations for d-Hitting Set(k), d-Set Packing(k), Edge Dominating Set(k) and a number of hitting and packing problems in graphs, each running in logspace. Additionally, we return to the question of linear-time kernelization. For d-Hitting Set(k) a linear-time kernelization was given by van Bevern [Algorithmica (2014)]. We give a simpler procedure and save a large constant factor in the size bound. Furthermore, we show that we can obtain a linear-time kernel for d-Set Packing(k) as well.Comment: 18 page

    Towards Optimal and Expressive Kernelization for d-Hitting Set

    Full text link
    d-Hitting Set is the NP-hard problem of selecting at most k vertices of a hypergraph so that each hyperedge, all of which have cardinality at most d, contains at least one selected vertex. The applications of d-Hitting Set are, for example, fault diagnosis, automatic program verification, and the noise-minimizing assignment of frequencies to radio transmitters. We show a linear-time algorithm that transforms an instance of d-Hitting Set into an equivalent instance comprising at most O(k^d) hyperedges and vertices. In terms of parameterized complexity, this is a problem kernel. Our kernelization algorithm is based on speeding up the well-known approach of finding and shrinking sunflowers in hypergraphs, which yields problem kernels with structural properties that we condense into the concept of expressive kernelization. We conduct experiments to show that our kernelization algorithm can kernelize instances with more than 10^7 hyperedges in less than five minutes. Finally, we show that the number of vertices in the problem kernel can be further reduced to O(k^{d-1}) with additional O(k^{1.5 d}) processing time by nontrivially combining the sunflower technique with d-Hitting Set problem kernels due to Abu-Khzam and Moser.Comment: This version gives corrected experimental results, adds additional figures, and more formally defines "expressive kernelization

    Unit Interval Editing is Fixed-Parameter Tractable

    Full text link
    Given a graph~GG and integers k1k_1, k2k_2, and~k3k_3, the unit interval editing problem asks whether GG can be transformed into a unit interval graph by at most k1k_1 vertex deletions, k2k_2 edge deletions, and k3k_3 edge additions. We give an algorithm solving this problem in time 2O(klog⁡k)⋅(n+m)2^{O(k\log k)}\cdot (n+m), where k:=k1+k2+k3k := k_1 + k_2 + k_3, and n,mn, m denote respectively the numbers of vertices and edges of GG. Therefore, it is fixed-parameter tractable parameterized by the total number of allowed operations. Our algorithm implies the fixed-parameter tractability of the unit interval edge deletion problem, for which we also present a more efficient algorithm running in time O(4k⋅(n+m))O(4^k \cdot (n + m)). Another result is an O(6k⋅(n+m))O(6^k \cdot (n + m))-time algorithm for the unit interval vertex deletion problem, significantly improving the algorithm of van 't Hof and Villanger, which runs in time O(6k⋅n6)O(6^k \cdot n^6).Comment: An extended abstract of this paper has appeared in the proceedings of ICALP 2015. Update: The proof of Lemma 4.2 has been completely rewritten; an appendix is provided for a brief overview of related graph classe

    Precedence-constrained scheduling problems parameterized by partial order width

    Full text link
    Negatively answering a question posed by Mnich and Wiese (Math. Program. 154(1-2):533-562), we show that P2|prec,pj∈{1,2}p_j{\in}\{1,2\}|Cmax⁥C_{\max}, the problem of finding a non-preemptive minimum-makespan schedule for precedence-constrained jobs of lengths 1 and 2 on two parallel identical machines, is W[2]-hard parameterized by the width of the partial order giving the precedence constraints. To this end, we show that Shuffle Product, the problem of deciding whether a given word can be obtained by interleaving the letters of kk other given words, is W[2]-hard parameterized by kk, thus additionally answering a question posed by Rizzi and Vialette (CSR 2013). Finally, refining a geometric algorithm due to Servakh (Diskretn. Anal. Issled. Oper. 7(1):75-82), we show that the more general Resource-Constrained Project Scheduling problem is fixed-parameter tractable parameterized by the partial order width combined with the maximum allowed difference between the earliest possible and factual starting time of a job.Comment: 14 pages plus appendi

    Network-based dissolution

    Get PDF
    We introduce a novel graph-theoretic dissolution model which applies to a number of redistribution scenarios such as gerrymandering or work economization. The central aspect of our model is to delete some vertices and redistribute their "load" to neighboring vertices in a completely balanced way. We investigate how the underlying graph structure, the pre-knowledge about which vertices to delete, and the relation between old and new "vertex load" influence the computational complexity of the underlying easy-to-describe graph problems, thereby identifying both tractable and intractable cases

    On the complexity of computing the kk-restricted edge-connectivity of a graph

    Full text link
    The \emph{kk-restricted edge-connectivity} of a graph GG, denoted by λk(G)\lambda_k(G), is defined as the minimum size of an edge set whose removal leaves exactly two connected components each containing at least kk vertices. This graph invariant, which can be seen as a generalization of a minimum edge-cut, has been extensively studied from a combinatorial point of view. However, very little is known about the complexity of computing λk(G)\lambda_k(G). Very recently, in the parameterized complexity community the notion of \emph{good edge separation} of a graph has been defined, which happens to be essentially the same as the kk-restricted edge-connectivity. Motivated by the relevance of this invariant from both combinatorial and algorithmic points of view, in this article we initiate a systematic study of its computational complexity, with special emphasis on its parameterized complexity for several choices of the parameters. We provide a number of NP-hardness and W[1]-hardness results, as well as FPT-algorithms.Comment: 16 pages, 4 figure

    Enumerating Isolated Cliques in Temporal Networks

    Full text link
    Isolation is a concept from the world of clique enumeration that is mostly used to model communities that do not have much contact to the outside world. Herein, a clique is considered isolated if it has few edges connecting it to the rest of the graph. Motivated by recent work on enumerating cliques in temporal networks, we lift the isolation concept to this setting. We discover that the addition of the time dimension leads to six distinct natural isolation concepts. Our main contribution is the development of fixed-parameter enumeration algorithms for five of these six clique types employing the parameter "degree of isolation". On the empirical side, we implement and test these algorithms on (temporal) social network data, obtaining encouraging preliminary results
    corecore